

dkfz. Deutsches Konsortium für **Translationale Krebsforschung Partnerstandort Freiburg**

Fitting a tumour control probability model to recurrence data based on MRI-delineated GTVs of radiotherapy of prostate cancer patients

Sachpazidis I.^{1,2,3}, Wibowo I.E.^{1,2,3}, Zamboglou C.^{2,3,4}, Thomann B.^{1,2,3}, Fechter T.^{1,2,3}, Klein C.M. ^{2,3,4}, Grosu A.-L. ^{2,3,4}, Mavroidis P. ⁵, Baltas D. ^{1,2,3}

¹Universitätsklinikum Freiburg, Klinik für Strahlenheilkunde, Abteilung Medizinische Physik, Freiburg, Deutschland ²Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Freiburg, Freiburg, Deutschland ³Universität Freiburg, Medizinische Fakultät, Freiburg, Deutschland ⁴Universitätsklinikum Freiburg, Klinik für Strahlenheilkunde, Freiburg, Deutschland ⁵University of North Carolina, Department of Radiation Oncology, Chapel Hill, NC, Vereinigte Staaten

Purpose

Aim of this study was to fit a tumour control probability (TCP) model to clinical data in terms of PSA relapse after primary radiation therapy for prostate cancer.

Methods and Material

We included 129 intermediate and high-risk prostate cancer patients with primary radiation therapy (21 relapsed, 108 non-relapsed). A GTV was delineated retrospectively based on a pre-treatment multi-parametric MRI imaging (mpMRI), co-registered to the planning CT. The mpMRI-based GTV was considered as the dominant lesion (DIL) defining the response to treatment [1]. The median clinical follow-up was 4 years and the Phoenix definition for PSA relapse has been used. The differential DVHs for the mpMRI-GTV have been used for TCP calculations with the mechanistic Poisson model [2]:

$$TCP(\{D\}, V) = \prod_{i=1}^{M} \left[\exp\left(-e^{e\gamma - \left(\frac{BQD_2}{D_{50}}\right) * (e\gamma - \ln \ln 2)}\right) \right]^{\Delta v_i} \text{ with } EQD2_i = \frac{D_i(1 + \frac{d_i}{\alpha/\beta^2})}{1 + \frac{2}{\alpha/\beta}}$$

 D_{50} is the EQD2 resulting to 50% response, and γ is the maximum value of the normalized dose-response gradient. M is the total number of DVH-bins, D_i and d_i are total dose and dose per fraction for the i-th bin. Δv_i is the volume for the i-th dose bin and V the volume of GTV. α/β was 1.93 Gy [3].

The TCP model was fitted using the maximum likelihood estimation technique. The likelihood function L for the binomial model with response r = 1 for relapse-free and 0 for relapse, is:

$$L(P) = L\left(\left(D_{50}, \gamma, \frac{\alpha}{\beta}\right), (\{D\}, V)\right) = \prod_{j=1}^{N} P_j^{r_j} \cdot (1 - P_j)^{(1 - r_j)}$$

with P_i the TCP prediction, r_i the clinical response for the j-th patient and N the total number of patients in the study.

The best parameter estimation for D_{50} and γ are those maximizing the L(P) estimator or equivalently minimizing the -ln(L(P)):

$$minimize - \ln(L(P)) = minimize \sum_{j=1}^{M} \{r_j \ln(P_j) + (1 - r_j) \ln (1 - P_j)\}$$

For the minimization we used simulated annealing (SA), a stochastic solver.

Fig. 1: TCP response curve with 95% confidence interval (CI) (green shadow area). Blue points refer to treatment responder patients and red points refer to non-responder patients. Asterisks denote the calculated TCP according to the mechanistic model.

Fig. 2: The ROC curve plots the False Positive Rate (FPR) on the Xaxis and the True Positive Rate (TPR) on the Y-axis for all possible thresholds.

Results

The best estimated solution was D_{50} = 67.33 Gy with 95% CI [65.70 Gy, 69.20 Gy] and γ = 4.96 with 95%CI [3.52, 6.67]. α/β was fixed to 1.93 Gy. Parameter ranges for a 68% CI were for D_{50} [66.40 Gy, 67.80 Gy] and γ [4.24, 5.77].

Our estimated D_{50} and y are in line with previously reported values for similar stages of the prostate carcinoma [4].

The calculated area under curve (AUC) was found to be 0.66. This area represents the ability of the mechanistic model to classify relapsed and relapsed-free patients, which is better than 0.5 (random selection). Some possible explanations for the relative low AUC value are: (i) the known significant underestimation (factor 2) of true GTV by mpMRI [5], (ii) the low number of relapse cases and (iii) the inhomogeneous patients characteristics and of their follow-up period.

[2] AAPM Report No. 166, https://www.aapm.org/pubs/reports/RPT_166.pdf (online: 2019.09.10)

[4] Kim K-H, Chung J-B, Suh TS, Kang S-W, Kang S-H, Eom K-Y, et al. (2018) Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT. PLoS ONE 13(11): e0207232. <u>https://doi.org/</u>10.1371/journal.pone.0207232

^[1] Zamboglou C, Klein C, et al., "The dose distribution in dominant intraprostatic tumour lesions defined by multiparametric MRI and PSMA PET/CT correlates with the outcome in patients treated with primary radiation therapy for prostate cancer," Radiat Oncol. 2018 Apr 12;13(1):65. doi: 10.1186/s13014-018-1014-1.

^[3] Constantinos Zamboglou, Benedikt Thomann, et al, "Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histology reference", Radiat Oncol. 2018; 13: 81. Published online 2018 May 2. doi: 10.1186/s13014-018-1036-8.

^[5] Bettermann AS, Zamboglou C, Kiefer S, et al. , "[⁵⁸Ga-]PSMA-11 PET/CT and multiparametric MRI for gross tumor volume delineation in a slice by slice analysis with whole mount histopathology as a reference standard - Implications for focal radiotherapy planning in primary prostate cancer", Radiother Oncol 2019. pii: S0167-8140(19)32984-6. doi: 10.1016/j.radonc.2019.07.005.