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Abstract. In this paper we are going to describe a brachytherapy planning system and the related optimization 
algorithms for optimization planning. Brachytherapy is an advanced cancer treatment. Radioactive sources 
are placed in or near the tumor itself, giving a high radiation dose to the tumor while reducing the radiation 
exposure in the surrounding healthy tissues.  
In addition, our scope is to present the scientific results of CEIROS EUROSTARS project and describe the 
mathematical and partly the physical background for the use of both DVH and gEUD concept for High Dose 
Rate (HDR) optimization. The concept of equivalent uniform dose (EUD) for tumors was introduced as the 
biologically equivalent dose that, if given uniformly, would lead to the same cell kill in the tumor volume as 
the actual non-uniform dose distribution. Later, it is extended to apply to normal tissues as well. Presently, 
most optimization systems use dose and/or dose–volume-based objective functions. Neither adequately 
represents the nonlinear response of tumors or normal structures to dose, especially for arbitrary 
inhomogeneous dose distributions. For instance, if a single voxel or a small number of voxels in a tumor 
receive a very low dose, it would not have a significant effect on the plan score. However, the tumor control 
probability would be greatly diminished as a result of the cold spot. Stated in a different way, for dose- or 
dose–volume-based objective functions, the penalty imposed for the failure to achieve the prescribed dose is 
proportional to the dose difference (or the square of the difference), rather than to the loss of tumor control, as 
would be more appropriate. 

1 INTRODUCTION 

Dose–volume constraints are simplified surrogates of the underlying biologic effects determining the 
outcome of treatment. Specifying a single dose–volume constraint is equivalent to stating that, if the volume 
above the tolerance dose is smaller than the critical volume, no complications will occur. This is a reduced 
subset and a special case of the critical volume dose–response model, in which a functional subunit is destroyed 
at exactly the tolerance dose and the response occurs when exactly the critical fractional number of the 
functional subunits is destroyed. One could argue that this inadequacy can be overcome by specifying the 
constraints on the entire dose–volume histogram (DVH) for the anatomic structure. However, there are multiple 
DVHs (in fact, an infinite number of them) that could lead to an equivalent dose response for a particular 
organ, but optimization based on each of these DVHs would, in general, lead to different dose responses in 
other organs and the tumor. Only one of these DVHs will be optimum so far as other organs and the tumor are 
concerned. Thus, constraining the search to a single DVH for an anatomic structure may miss the overall 
optimum solution. 

That multiple DVHs correspond to the same dose response is an important advantage for dose–response-
based objective functions. Mathematically speaking, one can state that dose–response functions are highly 
“degenerate” functions of dose–volume combinations and, therefore, of dose distributions. A dose–response 
index (e.g., tumor control probability [TCP], normal tissue complication probability [NTCP], EUD, or P_, the 
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probability of uncomplicated control) may be considered as a way of summarizing multiple DVHs into a single 
value similar to the way a DVH summarizes a three-dimensional dose distribution into a single curve. Dose–
volume-based objective functions are also degenerate functions of dose distributions (i.e., multiplicity of dose 
distributions correspond to the same dose– volume constraint), but to a considerably lesser extent. The high 
degeneracy of dose–response functions makes a large space of biologically equivalent dose distributions for 
each organ equally acceptable, thus giving greater flexibility to the optimization process to reconcile competing 
requirements to find a better solution. 

2 SIMULATION AND OPTIMIZATION APPLICATION 

2.1 Oncentra Prostate™ 
Brachytherapy is a type of radiotherapy for cancer treatment. Brachytherapy works by precisely targeting 

the cancerous tumor from inside the body. The source of radiation is placed directly inside or next to the tumor. 
This tailored approach reduces the risk of any unnecessary damage to healthy tissue and organs that are close to 
the tumor, therefore reducing potential side effects. 

In contrast to external beam radiotherapy (EBRT) that delivers radiation from outside the body. The 
radiation has to travel through healthy tissue to reach the tumor.  As the technique is less targeted and precise 
than brachytherapy, more healthy tissues and organs can be exposed to harmful levels of radiation 

Brachytherapy is commonly used as an effective treatment for cervical, prostate, breast and skin cancer and 
can also be used to treat tumors in many other sites of the body. Brachytherapy can be used to treat cancer on 
its own or in combination with other treatment methods, such as surgery, external beam radiotherapy or 
chemotherapy. The exact treatment(s) will depend on a number of factors, such as the location, shape and size 
of the tumor, and individual patient preferences. 

 

 
Figure 1. : Oncentra Prostate planning system 
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Figure 2. : Representation of radioactive sources inside the target/tumor 

3 MATERIAL AND METHODS 

3.1 Optimization problem in brachytherapy 
The inverse problem in Brachytherapy is looking for a set of dwell times {t}, given the organ structure and the 
number of catheters, the placement settings in 3D space and a given clinical protocol (dose optimization 
settings). 
A clinical protocol might be based on the GEC-ESTRO-EAU recommendation as illustrated below: 
 

Organ Parameter Value 
 Reference dose 11.5 Gy (=100%) 
Prostate D90 ≥ 100 % 
 V100 ≥ 90% 
 V150 ≤ 35% 
Urethra D10 ≤ 115% 
 D0.1 ≤ 120% 
Rectum D10 ≤ 75% 
 D0.1 ≤ 80% 
Bladder D10 ≤ 75% 
 D0.1 ≤ 80% 

Table 1. : Clinical protocol 
 

Numerical methods are used for the calculation of the dose inside the structures, since the analytical 
calculation is not possible. According to these methods, a large number of sampling points (ca. 10.000) is 
generated inside VOIs, the dose on these points is calculated and the information about the dose is taken using 
basic statistics.  

The preprocessing step of the plan optimization includes generation of the sampling points and calculation 
of all the Look Up Tables that are necessary for fast calculation of the dose contribution from each Source 
Dwell Position to each Sampling Point.  

Finally, based on the above information, the objective functions are evaluated iteratively for sets of dwell 
times proposed by LBFGS, until the algorithm converges. 
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Figure 3. : Optimization process and workflow 

 
3.2 gEUD-based objective function 
The gEUD-based objective function suggested by Wu et al [1] for IMRT optimization is used as a biologically-
based objective function for HDR brachytherapy optimization. In this concept, there are two types of objectives:  

the first type is the T
if objective corresponding to targets, aiming to cover the tumors with the desired dose and 

the second one OAR
if  corresponds to OARs aiming to protect it from hot spots and overdose.  

As it shown in the bibliography and confirmed in our preliminary runs, it is a good practice to assign two 

objectives (i.e. T
if  and OAR

if ) at each target. This way, the dose is restricted within a given range in the 

target volumes. 
Furthermore, in addition to the contoured OARs, an extra objective called normal tissue (NT), is defined. This 
corresponds to an area surrounding all contoured volumes and considered as health tissue that should be 
protected. This is a practice successfully used in dose based optimization. 
The calculation of the objective functions is based on the gEUD values. In turn, the gEUD values are calculated 
making use of the dose values in each voxel. In order to calculate these voxel doses, we generate sampling 
points inside the volume of each VOI (only inside and not on the surface as in the case of dose based 
optimization), using an advanced method (e.g. Halton sequence) which ensures the uniform distribution and 
the coverage of all parts of the volume. Given this, and a relatively high number of points, we can assume that 
the dose at each sampling point corresponds to the dose in a voxel. The dose calculations are based on the TG-
43 protocol and the use of predefined look-up tables. 
The optimization (minimization) of the objective function is based on the standard L-BFGS algorithm [2] 
(alternative implementation in BFGS gives equally good results) with a run time of ~0.5min for a standard case 
(5 objectives) on a Intel i5 processor with 4GB RAM, Win 7. Although the proposed objective is not convex, 
thus multiple minima are theoretically expected [3].  
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Aggregate objective function 
 
The aim of this method is to maximize the product of all the objectives or, alternatively, to minimize: 
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Where the objectives for targets and OARs are  
 
Target and OAR objective functions 
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The gEUD values are calculated as follows: 
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The dose at a sampling point k is calculated using the TG-43 dose kernels: 
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Where: 

T
objN : Number of Target objectives 

OAR
objN : Number of OAR objectives 

T
iN : Number of dose sampling points for the i-th Target. 

OAR
iN : Number of dose sampling points for the i-th OAR. 

iT
kd , , iOAR

kd ,  The dose at the k-th sampling point of the i-th   Target or OAR. 

iT
jmd ,~

, iOAR
jmd ,~

 The [j,m] entry of the dose kernel matrix (TG-43 Look up tables) for the i-th target or OAR 



Ilias Sachpazidis, Dimos Baltas, Georgios Sakas. 
ASDPN  Number of ASDPs (active source dwell positions) 

t Dwell times vector 
 
Indices:  

T: Target  

OAR: Organ at risk  

i: 
The index of the Target or the OAR (i.e. denoting the i-th target or the i-th OAR). 

Thus, for Targets, the index T
objNi ,...,1  while for OARs OAR

objNi ,...,1 . 

j or k: 
 

The index of the sampling point. For Targets, the index T
iNj ,...,1  while for OARs 

OAR
iNj ,...,1  

 
Parameters: 

 T
ia , OAR

ia : It is a structure-specific parameter which is usually negative for tumors and positive for 

organs-at-risk a is small and close to 1 for organs displaying parallel behaviour and large for organs of 
serial structure. 
 

 T
in , OAR

in : Parameter n is akin to the weight or penalty that indicates the importance of the structure-
specific end point. This corresponds to the importance factors used for the dose-based optimization 
(e.g. DVHO). 

 

 T
iN , OAR

iN : These are the total number of voxels (or equivalently sampling points) belonging to the i-

th target and i-th OAR.  
 

 iT
kd , , iOAR

kd , : It is the dose to a k-th voxel in the i-th target or OAR objective. For the  reasons 

explained above, we can assume that the dose at a voxel corresponds to the dose at a sampling point  
 

 T
igEUD ,0 : It is the desired dose parameter for the i-th target volume. 

 OAR
igEUD ,0 : It is the maximum tolerable uniform dose for i-th OAR. 

2.2 Optimization algorithm 
Limited-memory BFGS (L-BFGS or LM-BFGS) is an optimization algorithm [3][4] in the family of quasi-

Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited 
amount of computer memory. It is a popular algorithm for parameter estimation in machine learning [5]. 

Like the original BFGS, L-BFGS uses an approximation to the inverse Hessian matrix to steer its search 
through variable space, but where BFGS stores a dense n×n approximation to the inverse Hessian (n being the 
number of variables in the problem), L-BFGS stores only a few vectors that represent the approximation 
implicitly. Due to its resulting linear memory requirement, the L-BFGS method is particularly well suited for 
optimization problems with a large number of variables [6]. Instead of the inverse Hessian Hk, L-BFGS 
maintains a history of the past m updates of the position x and gradient ∇f(x), where generally the history size 
m can be small (often m<10). These updates are used to implicitly do operations requiring the Hk-vector 
product.  

2.3 gEUD based optimization run 
For running the our gEUD optimization algorithm, we used the following structures: (a) prostate gland as 

the PTV (target) and (b) OAR (prostate-OAR) and the (c) urethra, (d) bladder, and (e) rectum as the OARs. 
Having generated the clinically accepted HDR brachytherapy plans for the twelve prostate cancer patient cases 
using the HIPO in Ocentra Prostate application [8], the gEUD values for all the structures were calculated 
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using the DVH data results from the optimization. These gEUD values for each structure were used as the 
gEUD0 values for the corresponding gEUD-based optimization, for this part of the study. Using this technique 
the ability of the biologically-based optimization model to reproduce the treatment plans generated by the HIPO 
optimization method was tested, as a benchmarking method. For the prostate-OAR structure, the limiting 
gEUD0 value was set to 150% of the calculated target gEUD value, allowing for 50% overdose. The values for 
the rest of the optimization parameters are shown in Table 2, below. The optimized plans generated by the two 
different methods for each patient were compared based on the resulting DVHs and final gEUD values for each 
structure. 

3 RESULTS 

The ability of the gEUD-based optimization to reproduce the clinically accepted plans generated by the 
HIPO algorithm was tested at this point, by using the HIPO calculated final gEUD values as the gEUD0 goal for 
the gEUD-based optimization. Figure 4 shows the resulting DVH comparison graph from a representative case. 
For a similar target coverage, as shown by the overlapping DVH plots up to the 100% of the dose, small 
decrease in the dose range between 100% and 150% of the reference dose is noticed for the target accompanied 
by a more obvious decrease in the maximum doses received by the OARs, especially the urethra and the rectum. 
Comparison of the DVH evaluation parameters (Table 2) for the total of cases under study showed a statistically 
significant decrease in the mean PTV dose for somewhat smaller coverage of the PTV (<1% average difference 
for the V 100 parameter). This result is accompanied by a non-significant difference in the D100 value (p-value 
= 0.26), indicative of the target coverage, while the V150 and V200 parameters were decreased for the gEUD-
optimized plans. The comparison for the OARs showed a statistically significant decrease in the D10 evaluator 
by 3.3% for the urethra, 3.1% for the bladder, and 1.9% for the rectum. 
 

 
Figure 4. : DVH comparison of HIPO (dashed lines) and gEUD (solid lines) based optimization. 

 
 

Organ Opt. type Control point Mean  Std. Dev. p-value 
PTV HIPO D90 103.8 1.34 < 0.01 
 gEUD D90 102.8 1.44  
 HIPO D100 75.5 1.78 0.26 
 gEUD D100 76.6 1.67  
 HIPO V100 93.2 1.14 < 0.01 
 gEUD V100 92.4 1.34  
 HIPO V150 29.1 1.34 < 0.01 
 gEUD V150 26.9 1.58  
 HIPO V200 8.2 1.0 < 0.01 
 gEUD V200 7.4 0.83  
 HIPO Total gEUD (Gy) 12.9 0.44 0.10 
 gEUD Total gEUD (Gy) 12.8 0.54  
Urethra HIPO D10 112.4 1.48 < 0.01 
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 gEUD D10 109.1 1.89  
 HIPO D0.1cc 114.4 1.44 < 0.01 
 gEUD D0.1cc 110.8 2.04  
 HIPO Total gEUD (Gy) 11.8 0.54 < 0.01 
 gEUD Total gEUD (Gy) 11.6 0.63  
Bladder HIPO D10 45.5 2.04 < 0.01 
 gEUD D10 42.4 2  
 HIPO D0.1cc 72.3 1.41 < 0.01 
 gEUD D0.1cc 66.7 1.92  
 HIPO Total gEUD (Gy) 4.7 0.44 < 0.01 
 gEUD Total gEUD (Gy) 4.3 0.54  
Rectum HIPO D10 68.6 2.12 < 0.01 
 gEUD D10 66.7 2.28  
 HIPO D0.1cc 76.8 1.30 0.09 
 gEUD D0.1cc 75.6 1.70  
 HIPO Total gEUD (Gy) 6.5 0.70 < 0.01 
 gEUD Total gEUD (Gy) 6.3 0.70  

Table 2: HIPO and gEUD based optimization. Mean values and variance at specific control points 

4 CONCLUSIONS 

The gEUD-based optimization method for HDR brachytherapy treatment planning for prostate cancer was 
implemented in the research version of Oncentra Prostate. The comparison between dose based and biological-
based optimized HDR plans showed significantly improved sparing of the organs at risk for the biological-
based optimized plans. However, further investigation needs to be performed towards the dosimetric indices 
and clinical studies need to be performed. 
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